VOLUME OF SOLIDS

$\mathbf{1}^{\text {st }}$ thing - choose and use the correct formula from the formula sheet
Remember the volume of a cylinder is $V=\pi r^{2} h$
$\mathbf{2}^{\text {nd }}$ thing - make sure that you are using the radius and not the diameter
$3^{\text {rd }}$ thing - make sure that the formula on your calculator is the same as the formula in your working before your press enter!

Always write your full calculator answer, then round and add units (cm^{3} for volume)

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \times \pi \times(3.5)^{2} \times 11 \\
& =141.10987 \ldots \\
& =141 \mathrm{~cm}^{3}
\end{aligned}
$$

Now try these - round all your answers to 3 significant figures

$\text { Radius }=5 \mathrm{~m}, \text { height }=8 \mathrm{~m}$		
Di Diameter $=11 \mathrm{~cm}$	Sphere and cylinder. Radius of 8 cm , height of 15 cm	Volume of the water inside the cylinder after the ball is put in. Sphere $\mathrm{D}=8 \mathrm{~cm}$ Cylinder $\mathrm{D}=8 \mathrm{~cm}, \mathrm{~h}=11 \mathrm{~cm}$

Solutions

$V=\pi \times 5^{2} \times 8=628 \mathrm{~m}^{3}$	$V=\frac{4 \pi}{3} \times 6^{3}=905 \mathrm{~cm}^{3}$	$V=\frac{\pi}{3} \times 6^{2} \times 13=490 \mathrm{~cm}^{3}$
$V=\frac{2 \pi}{3} \times 5.5^{3}=348 \mathrm{~cm}^{3}$	$V=\pi \times 8^{2} \times 15+\frac{4 \pi}{3} \times 8^{3}$	$V=\pi \times 4^{2} \times 11-\frac{4 \pi}{3} \times 4^{3}$
$=5160 \mathrm{~cm}^{3}$	$=285 \mathrm{~cm}^{3}$	

